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In ballistics and gas dynamics one finds the shape of the body of revolu- 
tion having minimum drag for given length, volume, or other supplement- 
ary conditions. 

From these solutions and from experiments it Ls known that use of a 
body of optimal form at hypersonic speeds permits a reduction of its 
wave drag (compared with the equivalent cone) by approximately 30 to 40 
per cent (see El1 for example). 

We here attempt to formulate and solve the problem of the form of the 
three-dimensional optimal body in hypersonic gas flow. 

We consider flow past a body (Fig. 1) in a cylindrical system of co- 

ordinates p, cp, z with the z-axis chosen in the streamwise direction. 
We suppose that the surface of the body is described by the equation 

Taking the length of the body equal to 
unity, and the function f(z) to be dimension- 
less, we can take f(l) = 1, 

We shall determine the pressure on the 
surface of the body according to the 
Newtonian law, which can be written in the 

Pig. 1. 

% = k co@ (n, U) ( CP = ’ ~~*~‘) (2) 
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where CP is the pressure coefficient, k the coefficient of proportion- 
al ity, n is the normal vector, and U the velocity vector of the oncoming 
stream. Using equations (1) and (2) it can be shown that the drag coeffi- 
cient of the body. referred to the maximum area S is (for f’(z) > 0) 
given by the expression 

Consideration is now limited to slender bodies: then the quantity 
r2fs2(z> << 1 and it can be neglected in equation (3). As a result we 
have 

(3) 

Representation of the drag in the form (4) allows one to reduce the 
problem of finding the surface of the optiaal three-dimensional body to 
the separate problems of the determination of the optimal forms of the 
meridional curve and of the cross-section. The shape of the optimal 
meridian curve was found previously within the Newtonian approximation, 
and is well known to have the form f w z 316. To find the cross-sectional 
contour we formulate the following variational problem. In the class of 
smooth curves r(q) with a finite number of discontinuities in the first 
derivative to find the minimum of the functional 

2n 

J= 
s 

r4 NJ) dgr 
1 $ r’2 / 9 (&=+T r”(rpfdq) 

0 0 

for given maximum cross-section S, and a given characteristic dimension 
roe As is well known, the extremals for a variational problem of this 
kind must satisfy the Ruler equation for the fUnCtiOn 

F= I+:a,r2 +h*r2 

Also, along the extremals the Legendre condition Frrrr >,O must be 
fulfilled, and at points of discontinuity of .the derivative the 
leierstrass-Rrdmann conditions 

fF--‘F,,l~, = [F - r’F,, 1 af-o, IFr*l’p-o = iF,*lcpto (5) 

Because the expression for F does not contain the independent vari- 
able explicitly, the Ruler equation admits the integral 
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Here C is a constant of integration. Equation (6) consists of two 

irreducible fourth-degree differential equations and contains. generally 

speaking. eight families of integral curves. Without dwelling on the de- 

tails of the qualitative investigation of this equation, we note that an 

extremal with the above properties is not included entirely in any one 

family of integral curves, and that four of the eight families of inte- 

gral curves cannot be extremals in any part. We now transform equation 

(6) into parametric form by means of the substitution r12/ri2 = t2 

(where the subscript 1 is dropped). 

The remaining four families can be represented in the form 

r’ = 
(- If 2 

(i = 0, 1), 
1 dr= 4P (3 + P) 

li. (1 + Vl + (-1Y q (t, h)) 
d‘+’ = f T t7 . q (t, A) = h~ (1 + &)s. 

From equation (7) it follows immediately that if i = 0 then h > 0, 

and if i = 1 then h < 0. By virtue of the Legendre condition the para- 

meter t is contained within the limits 0 to ‘13. 

Integrating relation (7) for h > 0, we find that in parametric form 

the solution is given by 

+ = h (1 + ‘t/l + 4) 
--, (3) 

If A < 0, then we have correspondingly 

From equations (8) and (9) only two families of integral curves are 

determined. The remaining two families are obtained with a minus sign in 

the second of equations (7). 

If we form an estimate for the magnitude of the angle 9, it turns out 

that its greatest possible value is less than n/8. 

Consequently there are no closed curves in the families of integrals, 

and all the curves are arranged in a certain angle 0 d q <qO = ?(t,,). 

We now consider the third family of integral curves that is obtained 

with h > 0 and a minus sign in the second of equations (7). It is easy 
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to show that by reducing the parameter t from the value t,, to zero we 
obtain curves of the third faaily, situated in the angle ‘p. 4 9 < 2~~. 
Joining curves of the first and third family. we can obtain integral 
curves in the range 0 < g, < 2~, where the continuations of the lines 
of the first family are curves symmetric with respect to the original 
ones in the plane cp = ‘pe. To further extend the extremals to greater 
angles one again uses the first family of integral curves and repeats 
the previous construction. Carrying out a finite number of such con- 
structions, it is possible to construct extremals Pilling an angle of 
arbitrary size. If we thereby require that the angle q0 be a submultiple 
of 2n the extremal is closed. It is readily observed that at points of 
joining (t = 0 and t = to) of the pieces of which the extremal is formed 
the derivative suffers a discontinuity, so that generally speaking con- 
ditions (5) cannot be satisfied at these points. Checking shows, however. 
that the first of conditions (5) is satisfied identically at all junc- 
tion points, but the second only at points where t = 0, that is. at the 
maximum value of the radius. 

We shall now take as the characteristic linear dimension of the body 

the minimum value of the radius. The variation of the radius at points 
where t = to is equal to zero and the second of conditions (5) drops out. 
Similarly, it can be shown that the solution represented by equation (9) 
corresponds to the case when the characteristic dimension is taken equal 
to the maximum value of the radius. We derive relations for determining 

the constants c, te and h. By virtue of the closure of the extremal we 

have the equality 

where n is a positive integer determining the number of double Pieces 
of which the extremal is composed. Turning to the isoperimetric condi- 
tion and using equation (8) we find 

2 ‘? s (3 - t”) tw & 

G o(l + ‘t/~g)~ jf1 4-g (1 + W = nr”* (1 + v’l + go) 
(ge = g (to, A)) W) 

Recalling now that rmin = r”, we find a third condition in the form 

Investigation of relations (10) to (12) shows that they can be satis- 
fied if n is sufficiently great. In particular, the parameters h and to 
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are found for fixed n from conditions (10) 
c from condition (12). Thus it is possible 
extremals satisfying all the conditions of 
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and (11). and the parameter 
to obtain a countable set of 
the variational problem. Thus 

the form of the cross-section is entirely determined by the parameters 
n and S,/ro2 , the quantity r” characterizing only the scale of the body. 

The set of extremals obtained may for simplicity be regarded as 
analogous to the set of extremum points of a function such as y = ax + 
sin x(0 < a < 1). Be now consider the drag of the body obtained. From 

equation (4) we have 

The solution of the variational problem given by 

is rather complicated for practical calculation. Ye 

in greater detail for values of the parameter tc (< 

case the solution is considerably simplified. 

the above equations 

therefore study it 

1, since in this 

After some calculations from equations (8) to (13) we obtain 

where all integrals appearing in (14) are calculated in terms of ele- 

mentary functions. As a result the equation of the sections of which 

the cross-section of the body is composed takes the form 

The parameters of this curve are determined from the conditions 
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We note that equations (15) are written in the original coordinates. 

Fig. 2. Fig. 3. 

The drag coefficient for the case under consideration can be written as 

Calculation of the cross-section of the body from these equations 

offers no difficulty, and results are shown in Figs. 3 and 3 for a 

number of values of the parameter S1/ro2 with R = IO and n = 15. From 

these graphs it follows that the walls of the body are stretched along 

the radius and have a ratio 1.9 < rmax/rntin < 5. As a result of the 

cross-section of the body his a star-shaped form with very pronounced 

points. Figure 4 shows the general shape of the cross-section of the 

body with n = 10 and S1/ro2 = 5.94 and 9.34. Calculation of the drag of 

these bodies according to equation (17) shows that it is less than the 

drag of the equivalent optimal body of revolution (having the same 

length and maximum area) by, for example, a factor of twenty. Using (13) 

it is not difficult to see that the drag decreases with increase of the 

number of points a, and tends to zero in the limit n - a. Figure 5 shows 

the variation of the drag coefficient Cn, referred to the value CXO for 

the equivalent optimal body of revolution according to Newton, with the 

parameter Sl/ro2 for different values 

As is evident from the graph, with 

curves lie lower, so that the drag is 

parameter S1/ro2 increases. 

From these graphs one may conclude 

of the number of points n. 

increase in the number R the 

decreased, as it is also when the 

tbat the drag of optimal bodies 
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for which the variational problem bas a solution is less than the drag 
of the equivalent optimal bodies of revolution by a factor of twenty or 

Fig. 4. Fig. 5. 

more. This result is obviously exaggerated. The fact is that the surface 

of the optimal body obtained is ridged, and the Newtonian flow scheme 
is not justified in the vicinity of a ridge. so that in a more precise 
formulation such strong reductions of drag would not be observed. 
Naturally the drag of the body would actually remain finite for n - co, 
and au absolute optimum would evidently be obtained with a finite number 
of points. The practical utility of optimal bodies with a large number 
of points is also less effective because of the presence of the boundary 
layer. 

We turn our attention now to a property associated with the shape 
found for the cross-section of optimal bodies. According to the Newtonian 
flow scheme, the drag of a body is not changed 
if the lobes of which it is composed are re- 
arranged in a different order. Consequently 

n=fO; s‘,/PZ=5.94 

there appears the possibility of creating from 
one shape a set of others. These shapes will 
have from a mathematical point of view points 
of discontinuity, and from a physical one un- * 
necessary friction surfaces. However, the re- 
sults obtained above allow one to solve with- Fig. 6. 

out difficulty one variational problem, con- 
sisting in the determination of the optimal shape of a body one of whose 
lateral surfaces is a plane parallel to the stream. The solution follows 
immediately from the principle of symmetry, and the shape of the cross- 
section for n = 10 is shown in Fig. 6. 

The author is indebted to G.G. Chernyi for discussion of the work. 
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